# Subpart C—Characteristics of Hazardous Waste

## § 261.20 General.

(a) A solid waste, as defined in §261.2, which is not excluded from regulation as a hazardous waste under §261.4(b), is a hazardous waste if it exhibits any of the characteristics identified in this subpart.

[Comment: §262.11 of this chapter sets forth the generator's responsibility to determine whether his waste exhibits one or more of the characteristics identified in this subpart]

- (b) A hazardous waste which is identified by a characteristic in this subpart is assigned every EPA Hazardous Waste Number that is applicable as set forth in this subpart. This number must be used in complying with the notification requirements of section 3010 of the Act and all applicable record-keeping and reporting requirements under parts 262 through 265, 268, and 270 of this chapter.
- (c) For purposes of this subpart, the Administrator will consider a sample obtained using any of the applicable sampling methods specified in appendix I to be a representative sample within the meaning of part 260 of this chapter.

[Comment: Since the appendix I sampling methods are not being formally adopted by the Administrator, a person who desires to employ an alternative sampling method is not required to demonstrate the equivalency of his method under the procedures set forth in §§ 260.20 and 260.21.]

[45 FR 33119, May 19, 1980, as amended at 51 FR 40636, Nov. 7, 1986; 55 FR 22684, June 1, 1990; 56 FR 3876, Jan. 31, 1991]

## § 261.21 Characteristic of ignitability.

- (a) A solid waste exhibits the characteristic of ignitability if a representative sample of the waste has any of the following properties:
- (1) It is a liquid, other than an aqueous solution containing less than 24 percent alcohol by volume and has flash point less than 60 °C (140 °F), as determined by a Pensky-Martens Closed Cup Tester, using the test method specified in ASTM Standard D 93–79 or D 93–80 (incorporated by reference, see §260.11), or a Setaflash Closed Cup Tester, using the test method specified

in ASTM Standard D 3278-78 (incorporated by reference, see § 260.11).

- (2) It is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited, burns so vigorously and persistently that it creates a hazard.
  - (3) It is an ignitable compressed gas.
- (i) The term "compressed gas" shall designate any material or mixture having in the container an absolute pressure exceeding 40 p.s.i. at 70 °F or, regardless of the pressure at 70 °F, having an absolute pressure exceeding 104 p.s.i. at 130 °F; or any liquid flammable material having a vapor pressure exceeding 40 p.s.i. absolute at 100 °F as determined by ASTM Test D-323.
- (ii) A compressed gas shall be characterized as ignitable if any one of the following occurs:
- (A) Either a mixture of 13 percent or less (by volume) with air forms a flammable mixture or the flammable range with air is wider than 12 percent regardless of the lower limit. These limits shall be determined at atmospheric temperature and pressure. The method of sampling and test procedure shall be acceptable to the Bureau of Explosives and approved by the director, Pipeline and Hazardous Materials Technology, U.S. Department of Transportation (see Note 2).
- (B) Using the Bureau of Explosives' Flame Projection Apparatus (see Note 1), the flame projects more than 18 inches beyond the ignition source with valve opened fully, or, the flame flashes back and burns at the valve with any degree of valve opening.
- (C) Using the Bureau of Explosives' Open Drum Apparatus (see Note 1), there is any significant propagation of flame away from the ignition source.
- (D) Using the Bureau of Explosives' Closed Drum Apparatus (see Note 1), there is any explosion of the vapor-air mixture in the drum.
- (4) It is an oxidizer. An oxidizer for the purpose of this subchapter is a substance such as a chlorate, permanganate, inorganic peroxide, or a nitrate, that yields oxygen readily to stimulate the combustion of organic matter (see Note 4).

#### § 261.22

- (i) An organic compound containing the bivalent -O-O- structure and which may be considered a derivative of hydrogen peroxide where one or more of the hydrogen atoms have been replaced by organic radicals must be classed as an organic peroxide unless:
- (A) The material meets the definition of a Class A explosive or a Class B explosive, as defined in §261.23(a)(8), in which case it must be classed as an explosive,
- (B) The material is forbidden to be offered for transportation according to 49 CFR 172.101 and 49 CFR 173.21,
- (C) It is determined that the predominant hazard of the material containing an organic peroxide is other than that of an organic peroxide, or
- (D) According to data on file with the Pipeline and Hazardous Materials Safety Administration in the U.S. Department of Transportation (see Note 3), it has been determined that the material does not present a hazard in transportation
- (b) A solid waste that exhibits the characteristic of ignitability has the EPA Hazardous Waste Number of D001.

NOTE 1: A description of the Bureau of Explosives' Flame Projection Apparatus, Open Drum Apparatus, Closed Drum Apparatus, and method of tests may be procured from the Bureau of Explosives.

NOTE 2: As part of a U.S. Department of Transportation (DOT) reorganization, the Office of Hazardous Materials Technology (OHMT), which was the office listed in the 1980 publication of 49 CFR 173.300 for the purposes of approving sampling and test procedures for a flammable gas, ceased operations on February 20, 2005. OHMT programs have moved to the Pipeline and Hazardous Materials Safety Administration (PHMSA) in the

NOTE 3: As part of a U.S. Department of Transportation (DOT) reorganization, the Research and Special Programs Administration (RSPA), which was the office listed in the 1980 publication of 49 CFR 173.151a for the purposes of determining that a material does not present a hazard in transport, ceased operations on February 20, 2005. RSPA programs have moved to the Pipeline and Hazardous Materials Safety Administration (PHMSA) in the DOT.

NOTE 4: The DOT regulatory definition of an oxidizer was contained in \$173.151 of 49 CFR, and the definition of an organic peroxide was contained in paragraph 173.151a. An organic peroxide is a type of oxidizer.

[45 FR 33119, May 19, 1980, as amended at 46 FR 35247, July 7, 1981; 55 FR 22684, June 1, 1990; 70 FR 34561, June 14, 2005; 71 FR 40259, July 14, 2006]

#### § 261.22 Characteristic of corrosivity.

- (a) A solid waste exhibits the characteristic of corrosivity if a representative sample of the waste has either of the following properties:
- (1) It is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5, as determined by a pH meter using Method 9040C in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in § 260.11 of this chapter.
- (2) It is a liquid and corrodes steel (SAE 1020) at a rate greater than 6.35 mm (0.250 inch) per year at a test temperature of 55 °C (130 °F) as determined by Method 1110A in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, and as incorporated by reference in §260.11 of this chapter.
- (b) A solid waste that exhibits the characteristic of corrosivity has the EPA Hazardous Waste Number of D002.

[45 FR 33119, May 19, 1980, as amended at 46 FR 35247, July 7, 1981; 55 FR 22684, June 1, 1990; 58 FR 46049, Aug. 31, 1993; 70 FR 34561, June 14, 2005]

## § 261.23 Characteristic of reactivity.

- (a) A solid waste exhibits the characteristic of reactivity if a representative sample of the waste has *any* of the following properties:
- (1) It is normally unstable and readily undergoes violent change without detonating.
  - (2) It reacts violently with water.
- (3) It forms potentially explosive mixtures with water.
- (4) When mixed with water, it generates toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.
- (5) It is a cyanide or sulfide bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.

## **Environmental Protection Agency**

- (6) It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.
- (7) It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.
- (8) It is a forbidden explosive as defined in 49 CFR 173.54, or is a Division 1.1, 1.2 or 1.3 explosive as defined in 49 CFR 173.50 and 173.53.
- (b) A solid waste that exhibits the characteristic of reactivity has the EPA Hazardous Waste Number of D003.
- [45 FR 33119, May 19, 1980, as amended at 55 FR 22684, June 1, 1990; 75 FR 13002, Mar. 18,

#### § 261.24 Toxicity characteristic.

- (a) A solid waste (except manufactured gas plant waste) exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in §260.11 of this chapter, the extract from a representative sample of the waste contains any of the contaminants listed in table 1 at the concentration equal to or greater than the respective value given in that table. Where the waste contains less than 0.5 percent filterable solids, the waste itself, after filtering using the methodology outlined in Method 1311, is considered to be the extract for the purpose of this section.
- (b) A solid waste that exhibits the characteristic of toxicity has the EPA Hazardous Waste Number specified in Table 1 which corresponds to the toxic contaminant causing it to be hazardous.

TABLE 1-MAXIMUM CONCENTRATION OF CONTAMINANTS FOR THE TOXICITY CHARACTERISTIC

| EPA HW<br>No. 1 | Contaminant          | CAS No. 2 | Regu-<br>latory<br>Level<br>(mg/L) |
|-----------------|----------------------|-----------|------------------------------------|
| D004            | Arsenic              | 7440–38–2 | 5.0                                |
| D005            | Barium               | 7440–39–3 | 100.0                              |
| D018            | Benzene              | 71-43-2   | 0.5                                |
| D006            | Cadmium              | 7440-43-9 | 1.0                                |
| D019            | Carbon tetrachloride | 56-23-5   | 0.5                                |
| D020            | Chlordane            | 57-74-9   | 0.03                               |
| D021            | Chlorobenzene        | 108-90-7  | 100.0                              |
| D022            | Chloroform           | 67-66-3   | 6.0                                |
| D007            | Chromium             | 7440-47-3 | 5.0                                |
| D023            | o-Cresol             | 95–48–7   | 4200.0                             |
|                 |                      |           |                                    |

TABLE 1-MAXIMUM CONCENTRATION OF CONTAMINANTS FOR THE TOXICITY CHARACTERISTIC

| EPA HW<br>No. 1 | Contaminant                   | CAS No. 2 | Regu-<br>latory<br>Level<br>(mg/L) |
|-----------------|-------------------------------|-----------|------------------------------------|
| D024            | m-Cresol                      | 108-39-4  | 4200.0                             |
| D025            | p-Cresol                      | 106-44-5  | 4200.0                             |
| D026            | Cresol                        |           | 4200.0                             |
| D016            | 2,4-D                         | 94–75–7   | 10.0                               |
| D027            | 1,4-Dichlorobenzene           | 106-46-7  | 7.5                                |
| D028            | 1,2-Dichloroethane            | 107-06-2  | 0.5                                |
| D029            | 1,1-Dichloroethylene          | 75–35–4   | 0.7                                |
| D030            | 2,4-Dinitrotoluene            | 121–14–2  | ³ 0.13                             |
| D012            | Endrin                        | 72–20–8   | 0.02                               |
| D031            | Heptachlor (and its epoxide). | 76–44–8   | 0.008                              |
| D032            | Hexachlorobenzene             | 118–74–1  | <sup>3</sup> 0.13                  |
| D033            | Hexachlorobutadiene           | 87-68-3   | 0.5                                |
| D034            | Hexachloroethane              | 67-72-1   | 3.0                                |
| D008            | Lead                          | 7439-92-1 | 5.0                                |
| D013            | Lindane                       | 58-89-9   | 0.4                                |
| D009            | Mercury                       | 7439-97-6 | 0.2                                |
| D014            | Methoxychlor                  | 72-43-5   | 10.0                               |
| D035            | Methyl ethyl ketone           | 78-93-3   | 200.0                              |
| D036            | Nitrobenzene                  | 98-95-3   | 2.0                                |
| D037            | Pentrachlorophenol            | 87-86-5   | 100.0                              |
| D038            | Pyridine                      | 110-86-1  | <sup>3</sup> 5.0                   |
| D010            | Selenium                      | 7782-49-2 | 1.0                                |
| D011            | Silver                        | 7440-22-4 | 5.0                                |
| D039            | Tetrachloroethylene           | 127-18-4  | 0.7                                |
| D015            | Toxaphene                     | 8001-35-2 | 0.5                                |
| D040            | Trichloroethylene             | 79–01–6   | 0.5                                |
| D041            | 2,4,5-Trichlorophenol         | 95-95-4   | 400.0                              |
| D042            | 2,4,6-Trichlorophenol         | 88-06-2   | 2.0                                |
| D017            | 2,4,5-TP (Silvex)             | 93-72-1   | 1.0                                |
| D043            | Vinyl chloride                | 75–01–4   | 0.2                                |
|                 |                               |           |                                    |

Hazardous waste number.
 Chemical abstracts service number.
 Quantitation limit is greater than the calculated regulatory level. The quantitation limit therefore becomes the regulatory.

level.

4lf o-, m-, and p-Cresol concentrations cannot be differen-

<sup>4</sup>If o-, m-, and p-Cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/l.

<sup>4</sup>If o-, m-, and p-Cresol concentrations cannot be differentiated, the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/l.

[55 FR 11862, Mar. 29, 1990, as amended at 55 FR 22684, June 1, 1990; 55 FR 26987, June 29, 1990; 58 FR 46049, Aug. 31, 1993; 67 FR 11254, Mar. 13, 2002; 71 FR 40259, July 14, 2006]

# Subpart D—Lists of Hazardous **Wastes**

# § 261.30 General.

- (a) A solid waste is a hazardous waste if it is listed in this subpart, unless it has been excluded from this list under §§ 260.20 and 260.22.
- (b) The Administrator will indicate his basis for listing the classes or types of wastes listed in this subpart by employing one or more of the following Hazard Codes:

| Ignitable Waste               | (I) |
|-------------------------------|-----|
| Corrosive Waste               | (C) |
| Reactive Waste                | (R) |
| Toxicity Characteristic Waste | (E) |